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Learning Sequential Siructure

Abstract

How is complex sequential material acquired, processed, and represented when
there is no intention to learn ? We report on two experiments exploring a choice
reaction time task. Unbeknownst to subjects, successive stimuli followed a
sequence derived from a "noisy" finite-state grammar. After considerable practice
(60,000 exposures) with Experiment 1, subjects acquired a compIPx kNdy n,
procedural knowledge about the sequential structure of the material. Experiment 2
attempted to identify limits on subjects' ability to encode the temporal context by
using more distant contingencies that spanned irrelevant material. Taken together,
the results indicate that subjects become increasingly sensitive to the temporal
context set by previous elements of the sequence, up to three elements. Responses
are also affected by priming effects from recent trials. A PDP model that
incorporates sensitivity to the sequential structure and to priming effects is shown
to capture key aspects of both acquisition and processing. The model also accounts
for the interaction between attention and sequence structure reported by Cohen,
Ivry and Keele (1990).
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Learning Sequential Structure

Introduction

In many situations, learning does not proceed in the explicit and goal-directed way
characteristic of traditional models of cognition (Newell & Simon, 1972). Rather, it appears
that a good deal of our knowledge and skills are acquired in an incidental and unintentional
manner. The evidence supporting this claim is overwhelming: In his recent review article,
Reber (1989) analyzes about 40 empirical studies that document the existence of learning
processes that do not necessarily entail awareness of the resulting knowledge or of the learning
experience itself. At least three different "implicit learning" paradigms have yielded robust and
consistent results : artificial grammar learning (Dulany, Carlston, & Dewey, 1984; Mathews et
al., 1989; Reber, 1967, 1989; Servan-Schreiber & Anderson, in press), system control (Berry
& Broadbent, 1984; Hayes & Broadbent, 1988), and sequential pattern acquisition (Nissen &
Bullemer, 1987; Lewicki, Czyzewska & Hoffman, 1987; Lewicki, Hill & Bizot, 1988;
Willingham, Nissen & Bullemer, 1989; Cohen, Ivry & Keele, 1990). The classic result in these
experimental situations is that "subjects are able to acquire specific procedural knowledge (i.e.
processing rules) not only without being able to articulate what they have learned, but even
without being aware that they had learned anything" (Lewicki, Czyzewska & Hoffman, 1987).
Related research with neurologically impaired patients (see Schacter, 1987, for a review) also
provides strong evidence for the existence of a functional dissociation between "explicit
memory" (conscious recollection) and "implicit" memory (a facilitation of performance
without conscious recollection).

Despite this wealth of evidence documenting implicit learning, few models of the
mechanisms involved have been proposed. Reber's analysis of the field (Reber, 1989), for
instance, leaves one with the impression that little has been done beyond mere demonstrations
of existence. This lack of formalization can doubtless be attributed to the difficulty of assessing
subject's knowledge when it does not lend itself easily to verbalization. Indeed, whereas
concept formation or traditional induction studies can benefit from experimental procedures
that reveal the organization of subjects' knowledge and the strategies they use, such procedures
often appear to disrupt or alter the very processes they are supposed to investigate in implicit
learning situations (see Dulany, Carlson and Dewey, 1984; 1985; Reber, Allen and Regan,
1985, for a discussion of this point). Thus, research on implicit learning has typically focussed
more on documenting the conditions under which one might expect the phenomenon to
manifest itself than on obtaining the fine-grained data needed to elaborate information-
processing models.

Nevertheless, a detailed understanding of such learning processes seems to be an essential
preliminary step towards developing insights into the central questions raised by recent
research, such as the relationship between task performance and verbalizable knowledge, the
role that attention plays in unintentional learning, or the complex interactions between
conscious thought and the many other functions of the cognitive system. Such efforts at
building simulation models of implicit learning mechanisms in specific experimental situations
are already underway. For instance, Servan-Schreiber and Anderson (in press), and Mathews et
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al. (1989) have both developed models of the Reber task that successfully account for key
aspects of learning and classification performance.

In this paper, we explore performance in a different experimental situation, which has
recently attracted increased attention as a paradigm for studying unintentional learning:
sequential pattern acquisition. We report on two experiments which investigate sequence
learning in a novel way that allows detailed data on subjects' sequential expectations to be
obtained, and explore an information-processing model of the task.

Sequence Learning

An increasingly large number of empirical studies have begun to explore the conditions
under which one might expect subjects to display sensitivity to sequential structure despite
limited ability to verbalize their knowledge. Most of these studies have used a choice reaction
time paradigm. Thus, Lewicki, Hill and Bizot (1988) used a four-choice reaction time task
during which the stimulus could appear in one of four quadrants of a computer screen on any
trial. Unbeknownst to subjects, the sequential structure of the material was manipulated by
generating sequences of five elements according to a set of simple rules. Each rule defined
where the next stimulus could appear as a function of the locations at which the two previous
stimuli had appeared. As the set of sequences was randomized, the first two elements of each
sequence were unpredictable. By contrast, the last three elements of each sequence were
determined by their predecessors. Lewicki et al. (1988) hypothesized that this difference would
be reflected in response latencies to the extent that subjects are using the sequential structure to
respond to successive stimuli. The results confirmed the hypothesis: a progressively widening
difference between the number of fast and accurate responses elicited by predictable and
unpredictable trials emerged with practice. Further, subjects were exposed to a different set of
sequences in a later part of the experiment. These sequences were constructed using the same
transition rules, but applied in a different order. Any knowledge about the sequential structure
of the material acquired in the first part of the experiment thus became suddenly useless, and a
sharp increase in response latency was expected. The results were consistent with this
prediction. Yet, when asked after the task, subjects failed to report having noticed any pattern
in the sequence of exposures, and none of them even suspected that the sequential structure of
the material had been manipulated. Obviously, repeated exposure to structured material elicits
performance improvements that depend specifically on the fact that the material is structured
(as opposed to general practice effects). Similar results have been described in different tasks.
For instance, Miller (1958) reported higher levels of free recall performance for structured
strings over random strings. Hebb (1961) reported an advantage for repeated strings over non-
repeated strings in a recall task, even though subjects were not aware of the repetitive nature of
the material. Pew (1974) found that tracking performance was better for a target that followed a
consistent trajectory than for a random target. Again, subjects were unaware of the
manipulation, and failed to report noticing any pattern. More recently, Lewicki, Czyzewska and
Hoffman (1987) reported improved performance in a search task when combinations of trials as
remote as six steps contained information about the location of the target. Other subjects given
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as much time as they wished to identify the crucial information failed in doing so, thereby
suggesting that the relevant patterns were almost impossible to detect explicitly.

However, lack of awareness, or inability to recall the material, does not necessarily entail
that these tasks require no attentional capacity. Nissen and Bullemer (1987) demonstrated that a
task similar to that used by Lewicki et al. (1988) failed to elicit performance improvements
with practice when a memory-intensive secondary task was performed concurrently. More
recently, Cohen, Ivry and Keele (1990) refined this result by showing that the ability to learn
sequentialmaterial under attentional distraction interacts with sequence complexity. Only
sequences composed entirely of ambiguous elements (i.e. elements which can not be predicted
solely on the basis of their immediate predecessor) are difficult to learn when a secondary task
is present.

To sum up, there is clear evidence that subjects acquire specific procedural knowledge
when exposed to structured material. When the material is sequential, this knowledge is aoout
the temporal contingencies between sequence elements. Further, it appears that the learning
processes underlying performance in sequential choice reaction experiments do not entail or
require awareness of the relevant contingencies, although attention is needed to learn even
moderately complex material. Several important questions remain unanswered, however.

First, it is not clear how sensitivity to the temporal context develops over time. How do
responses to specific sequence elements vary with practice ? Does sensitivity to more or less
distant ccntingencies develop in parallel, or in stages, with the shortest contingencies being
encoded earlier than the longer ones ? Is there an upper limit to the amount of sequential
information that can be encoded, even after considerable practice ?

Second, most recent research on sequence processing has used very simple material (but see
Lewicki, Czyzewska & Hoffman, 1987), sometimes even accompanied by explicit cues to
sequence structure (Lewicki, Hill & Bizot, 1988). Are the effects reported in these relatively
simple situations also observed when subjects are exposed to much more complex material
involving, for instance, some degree of randomness, or sequence elements that differ widely in
their predictability ?

Third, and perhaps most importantly, no detailed information-processing model of the
mechanisms involved has been developed to account for the empirical findings reviewed
above. In other words: what kind of mechanisms may underlie sequence learning in choice
reaction time situations ?

In the rest of this paper, we explore the first two questions by proposing an answer to the
third. We first describe a PDP model in which processing of events is allowed to be
modulated by contextual information. The model learns to develop its own internal
representations of the temporal context despite very limited processing resources, and produces
responses that reflect the likelihood of observing specific events in the context of an
increasingly large temporal "window". We then report on two experiments using a choice
reaction time task. Unbeknownst to subjects, successive stimuli followed a sequence derived
from a "noisy" finite-state grammar, in which random stimuli were interspersed with structured
stimuli in a small proportion of the trials throughout training. This procedure allowed us to
obtain detailed data about subject's expectations after specific stimuli at any point in training.
After considerable practice (60,000 exposures) with Experiment 1, subjects acquired a complex
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body of procedural knowledge about the sequential structure of the material. We analyze this
data in detail. Experiment 2 attempted to identify limits on subjects' ability to encode the
temporal context by using more distant contingencies that spanned irrelevant material. Next, we
argue that the mechanisms implemented in our model may constitute a viable model of implicit
learning in sequence learning situations, and support this claim by a detailed analysis of the
correspondence between the model and our experimental data. Finally, we examine how well
the model captures the interaction between attention and sequence structure reported by Cohen
et al. (1990).

A model of sequence learning

Early research on sequence processing has addressed two related but distinct issues
probability learning situations, in which subjects are asked to predict the next event in a
sequence; and choice reaction situations, in which subjects simply respond to the current
stimulus but nevertheless display sensitivity to the sequential structure of the material. Most of
the work in this latter area has concentrated on relatively simple experimental situations, such
as two-choice reaction time paradigms, and relatively simple effects, such as repetition and
stimulus frequency effects. In both cases, most early models of sequence processing (e.g.,
Estes, 1976; Falmagne, 1965; Laming, 1969; Restle, 1970) have typically assumed that subjects
somehow base their performance on an estimation of the conditional probabilities
characterizing the transitions between sequence elements, but failed to show how subjects
might come to represent or compute them. Laming (1969), for instance, assumes that subjects
continuouslv undate running averages estimates of the probability of occurrence of each
stimulus, based on a arbitrarily limited memory of the sequence. Restle (1970) has emphasized
the role that explicit recoding strategies play into probability learning, but presumably this
work is less relevant in situations for which no explicit prediction responses are expected from
the subjects.

Two points seem to be problematic with these early models. First, it seems dubious to
assume that subjects actually base their performance on some kind of explicit computation of
the optimal conditional probabilities, except possibly in situations where such computations are
required by the instructions (such as in probability learning experiments). In other words,
these early models are not process models. They may be successful in providing good
descriptions of the data, but fail to give any insights into how processing is actually conducted.

Second, it is not clear how the temporal context gets integrated in these early models. Often,
an assumption is made that subjects estimate the conditional probabilities of the stimuli given
the relevant temporal context information, but no functional account of how the context
information - and how much of it - is allowed to influence processing of the current event is
provided.

In the following, we present a model that learns to encode the temporal context as a
function of whether or not it is relevant in optimizing performance at the task. The model
consists of a Simple Recurrent back-propagation Network ("SRN", see Cleeremans,
Servan-Schreiber & McClelland, 1989; Elman, 1990). In the SRN (Figure 1), the hidden unit
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layer is allowed to feed back on itself, so that the intermediate results of processing at time t-I
can influence the intermediate results of processing at time t. In practice, the SRN is
implemented by copying the pattern of activation on the hidden units onto a set of "context
units" which feed into the hidden layer, along with the input units. All the forward-going
connections in this architecture are modified by back-propagation. The recurrent connections
from the hidden layer to the context layer implement a simple copy operation and are not
subject to training.

OUTPUT UNITS Element t+1

HIDDEN UNITS

7 CONTEXTU INPUT UNITS: Element t

Figure 1 : The simple recurrent network (SRN).

At first sight, this architecture appears to be a good candidate for modelling implicit
learning phenomena. Indeed, the back-prcpagation learning procedure implements the kind of
elementary associative learning that seems characteristic of many implicit learning processes.
However, there is also substantial evidence that knowledge acquired implicitly is nevertheless
very complex and structured (Reber, 1989) - not the kind of knowledge one thinks would
emerge from associative learning processes. The work of Elman (1990, in press), in which the
SRN architecture was applied to language processing, has demonstrated that the representations
developed by the network are highly structured and accurately reflect subtle contingencies,
such as those entailed by pronominal reference in complex sentences. Thus, it appears that the
SRN embodies two important aspects of implicit learning performance: elementary learning
mechanisms that yield complex and structured knowledge. But what makes the SRN suitable
for sequence processing ?

As reported elsewhere (Cleeremans et al., 1989), we have explored the computational
aspects of this architecture in considerable detail. Following Elman (1990), we have shown that
a i SRN trained to prcdict the successor of each element of a sequence presented one element
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at a time can learn to perform this "prediction task" perfectly on moderately complex material.
For instance, the SRN can learn to predict optimally each element of a continuous sequence
generated from small finite-state grarnmars i such as the one represented in Figure 2. After
training, the network produces responses that closely approximate the optimal conditional
probabilities of presentation of all possible successors of the sequence at each step. Since all
letters of the grammar were inherently ambiguous (i.e. optimal predictions required more than
the immediate predecessor to be encoded), the network must have developed representations of
entire subsequences of events. Note that the network is never presented with more than one
element of the sequence at a time. Thus, it has to elaborate its own internal representations of as
much temporal context as needed to achieve optimal predictions.

A complete analysis of the learning process is too long to be presented here (a full account
is given in Servan-Schreiber, Cleeremans & McClelland, 1988), but the key points are as
follows : As the initial papers about back-propagation (e.g. Rumelhart, H-inton & Williams,
1986) pointed out, the hidden unit patterns of activation represent an "encoding" of the
features of the input patterns that are relevant to the task. In the SRN, the hidden layer is
presented with information about the current letter, but also - on the context layer - with an
encoding of the relevant features of the previous letter. Thus, a given hidden layer pattern can
come to encode information about the relevant features of two consecutive letters. When this
r attern is fed back on the context layer, the new pattern of activation over the hidden units can
come to encode information about three consecutive letters, and so on. In this manner, the
context layer patterns can allow the network to learn to maintain prediction-relevant features of
an entire sequence of events. Naturally, the actual process through which temporal context is
integrated into the representations that the network develops is much more continuous than the
above description implies. That is, the "phases of learning" outlined above are but particular
points on a continuum.

To summarize, learning and processing in the SRN model have several properties that make
it attractive as an architecture for sequence learning. First, the model only develops sensitivity
to the temporal context if it is relevant in optimizing performance on the current element of the
sequence. As a result, there is no need to make specific assumptions regarding the size of the
temporal window that the model is allowed to receive input from. Rather, the size of this self-
developed window appears to be essentially limited by the complexity of the sequences to be
learned by the network. Representational resources (i.e. the number of hidden units available
for processing) are also a limiting factor, but only a marginal one. Second, the model makes
minimal assumptions regarding processing resources : its architecture is elementary, and all
computations are local to the current element (i.e. there is no explicit representation of the
previous elements). Processing is therefore strongly driven by the constraints imposed by the
prediction task. As a consequence, the model tends to become sensitive to the temporal context
in a very gradual way, and will tend to fail to discriminate between the successors of identical
subsequences preceded by disambiguating predecessors when the embedded material is not

I In a finite-state grammar, sequences can be generated by randomly choosing an arc among the possible arc
emanating from a particular node, and repeating this process with the node pointed to by the selected arc. A
continuous sequence can be generated by assuming that the grammar loops onto itself, that is, that its first and last
nodes are one and the same.
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itself dependent on the preceding information. We will return to this last point in the general
discussion.

In order to evaluate the model as a theory of human learning in sequential choice reaction
time situations, we assumed 1) that the activations of the output units represent response
tendencies, and 2) that the reaction time to a particular response is proportional to some
function of the activation of the corresponding output unit. The specific instantiations of these
assumptions that were adopted in this research will be detailed later. With these assumptions in
place, the model produces responses which can be directly compared to experimental data In
the following, we report on two experiments that were designed to allow for such detailed
comparisons to be conducted.

Experiment 1

Subjects were exposed to a six-choice reaction time task. The entire experiment was divided
in 20 sessions. Each session consisted of 20 blocks of 155 trials. On any of the 60.000
recorded trials (see below), a stimulus could appear at one of six positions arranged in a
horizontal line on a computer screen. The task consisted of pressing as fast and as accurately as
possible on one of six corresponding keys. Unbeknownst to subjects, the sequential structure of
the stimulus material was manipulated. Stimuli were generated using a small finite-state
grammar that defined legal transitions between successive trials. Some of the stimuli, however,
were not "grammatical". On each trial, there was a 15% chance of substituting a random
stimulus to the one prescribed by the grammar. This "noise" served two purposes. First, it
ensured that subjects could not simply memorize the sequence of stimuli, and hindered their
ability of detecting regularities in an explicit way. Second, since each stimulus was possible on
every trial (if only in a small proportion of the trials), we could obtain detailed information
about what stimuli subjects did or did not expect at each step.

If subjects become increasingys sensitive to the sequential structure of the material over
training, one would thus predict an increasingly large difference in the reaction times elicited
by predictable and unpredictable stimuli. Further, detailed analyses of the RTs to particular
stimuli in different temporal contexts should reveal differences that reflect subject's
progressive encoding of the sequential structure of the material.

Method

Subjects. Six subjects (CMU staff and students) aged 17-42 participated in the experiment.
Each subject was paid $100 for his participation in the 20 sessions of the experiment, and
received a bonus of up to $50 based on speed and accuracy.

Apparatus and display. The experiment was run on a Macintosh II computer. The display
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consisted of six dots arranged in a horizontal line on the computer's screen and separated by
intervals of 3 cm. At a viewing distance of approximately 57 cm, the distance between any two
dots subtended a visual angle of 3.01*. Each screen position corresponded to a key on the
computer's keyboard. The spatial configuration of the keys was compatible with the screen
positions (i.e. the leftmost key corresponded to the leftmost screen position, etc. The following
keys were used : Z, X, C, B, N, M). The stimulus was a small black circle 0.40 cm in diameter
that appeared centered 1 cm below one of the six dots. The timer was started at the onset of the
stimulus and stopped by the subject's response. The response-stimulus interval was 120 msec.

Procedure. Subjects received detailed instructions during the first meeting. They were told
that the purpose of the experiment was to "learn more about the effect of practice on motor
performance". Both speed and accuracy were stressed as being important. After receiving the
instructions, subjects were given 3 practice blocks of 15 random trials each at the task. A
schedule for the 20 experimental sessions was then set up. Most subjects followed a regular
schedule of two sessions a day.

The experiment itself consisted of 20 sessions of 20 blocks of 155 trials each. Each block
was initiated by a "Get ready" message and a warning beep. After a short delay, 155 trials were
presented to the subject. The first five trials of each block were entirely random so as to
eliminate initial variability in the responses. These data points were not recorded. The next 150
trials were generated according to the procedure described below (in the "Stimulus material"
section). Errors were signalled to the subject by a short beep. After each block, the computer
paused for approximately 30 seconds. The message "Rest Break" was displayed on the screen,
along with information about subjects' performance. This feedback consisted of the mean RT
and accuracy values for the last block, and of information about how these values compared to
those for the next-to-last block. If the mean RT for the last block was within a 20-msec interval
of the mean RT for next-to-last block, the words "AS BEFORE" were displayed; otherwise,
either "BETTER", or "WORSE" appeared. A 2% interval was used for accuracy. Finally,
subjects were also told about how much they had earned during the last block, and during the
entire session up to the last block. Bonus money was allocated as follows : each reaction time
under 600 msec was rewarded by .078 cents, and each error entailed a penalty of 1. 11 cents.
These values were calculated so as to yield a maximum of $2.5 per session.

Stimulus Material. Stimuli were generated on the basis of the small finite-state grammar
shown in Figure 2. Finite-State grammars consist of nodes connected by labeled arcs.
Expressions of the language are generated by starting at node #0, choosing an arc, recording its
label, and repeating this process with the next node. Note that the grammar loops onto itself:
the first and last nodes, both denoted by the digit 0, are actually the same. The vocabulary
associated with the grammar consists of six letters ('T', 'S', 'X', 'V', 'P', and 'Q'), each
represented twice on different arcs (as denoted by the subscript on each letter). This results in
highly context-dependent transitions, as identical letters can be followed by different sets of
successors as a function of their position in the grammar (For instance, 'S 1 ' can only be
followed by 'Q', but 'S2' can be followed by either 'V' or 'P'). Finally, the grammar was
constructed so as to avoid drect repetitions of a particular letter, since it is known (Bertelson,
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1961; Hyman, 1953) that repeated stimuli elicit shorter reaction times independently of their
probability of presentation. (Direct repetitions can still occur because a small proportion of the
trials were generated randomly, as described below.)

#2 Q Xl # 5

0(Start) QP#

2 2
1"TI V2  X2 # 6

Figure 2 The Finite State Grammar used to generate the stimulus sequence in

Exneriment 1. Note that the first and last nodes are one and the same.

Stimulus generation proceeded as follows. On each trial, three steps were executed in
sequence. First, an arc was selected at random among the possible arcs coming out of the
current node, and its corresponding letter recorded. The current node was set to be node #0 on
the sixth trial of any block, and was updated on each trial to be the node pointed to by the
selected arc. Second, in 15% of the cases, another letter was substituted to the letter recorded at
step 1 by choosing it at random among the five remaining letters in the grammar. Third, the
selected letter was used to determine the screen position at which the stimulus would appear. A
6 x 6 Latin Square design was used, so that each letter corresponded to each screen position for
exactly one of the six subjects.

Post-experimental interviews. All subjects were interviewed after completion of the
experiment. The experimenter asked a series of increasingly specific questions in an attempt to
gain as much information about subjects' explicit knowledge of the manipulation and the task.
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Results and Discussion

Task performance. Figure 3 shows the average reaction times on correct responses for
each of the 20 experimental sessions, plotted separately for predictable and unpredictable trials.
We discarded responses to repeated stimuli (which are necessarily ungrammatical) since they
elicit fast RTs independently of their probability of presentation, as discussed above. The figure
shows that a general practice effect is readily apparent, as well as an increasingly large
difference between predictable and unpredictable trials. A two-way ANOVA with repeated
measures on both factors (practice [20 levels] X trial type [grammatical vs. ungrammatical])
revealed significant main effects of practice, F(19,95) = 9.491, p < .001, MSe = 17710.45;
and of trial type, F(1,5) = 105.293, p < .001, MSe = 104000.07; as well as a significant
interaction, F(19,95)= 3.022, p < .001, MSe = 183.172. It appears that subjects become
increasingly sensitive to the sequential structure of the material.

600

580 - Grammatical
j~ngmmalcaI

560

640

E 520

500

480

I 460

J 440

420

400

380

360
0 3 10 15 20

Session

Figure 3 Mean RTs for grammatical and ungrammatical trials for each of the 20

sessions of Experiment 1.

Accuracy averaged 98.12% over all trials. Subjects were slightly more accurate on
grammatical trials (98.40%) than on ungrammatical trials (96. 10%) throughout the experiment.
A two-way ANOVA with repeated measures on both factors (practice [20 levels] X trial type
[grammatical vs. ungrammatical]) confirmed this difference, F(1,5) = 7.888, p < .05, MSe =
.004. The effect of practice did not reach significance, F(19, 95) = .380, p > .05, MSe =
.0003; neither did the interaction, F(19,95) = .727, p> .05, MSe = .00017.
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Post-experimental interviews. Each subject was interviewed after completion of the
experiment. We loosely followed the scheme used by Lewicki, Hill & Bizot (1988). Subjects
were first asked about "whether they had anything to report regarding the task". All subjects
reported that they felt their performance had improved a lot during the 20 sessions, but much
less so in the end. Two subjects reported that they felt frustrated because of the lack of
improvement in the last sessions.

Next, subjects were asked "if they had noticed anything special about the task or the
material". This question failed to elicit more detailed reports. All subjects tended to repeat the
comments they had given in answering the first question.

Finally, subjects were asked directly "if they had noticed any regularity in the way the
stimulus was moving on the screen". All subjects reported noticing that short sequences of
alternating stimuli did occur frequently. When probed further, five subjects were able to specify
that they had noticed two pairs of positions between which the alternating pattern was taking
place. Upon examination of the data, it appeared that these reported alternations corresponded
to the two small loops on nodes #2 and #4 of the grammar. One subject also reported noticing
another more complex pattern between three positions, but was unable to specify the exact
locations when asked. All subjects felt that the sequence was random when not involving these
salient patterns. When asked if they "had attempted to take advantage of the patterns they had
noticed in order to anticipate subsequent events", all subjects reported that they had attempted
to do so at times (for the shorter patterns), but that they felt that it was detrimental to their
performance as it resulted in more errors and slower responses. Thus, it appears that subjects
only had limited reportable knowledge of the sequential structure of the material, and that they
tried not to use what little knowledge they had.

Gradual encoding of the temporal cont rt. As discussed in the introduction, one
mechanism that would account for the progressive differentiation between predictable and
unpredictable trials consists of assuming that subjects, in attempting to optimize their
responses, progressively come to prepare for successive events on the basis of an increasingly
large temporal context set by previous elements of the sequence. In the grammar we used, most
elements can be perfectly anticipated on the basis of two elements of temporal context, but
sime of them require three or even four elements of temporal context to be optimally
disambiguated. For instance, the path 'SQ' (leading to node #1) occurs only once in the
grammar and can only be legally followed by 'S' or by 'X'. In contrast, the path 'TVX' can
lead to either node #5 or node #6, and is therefore not sufficient to perfectly distinguish
between stimuli that occur only (in accordance with the grammar) at node #5 ('S' or 'Q') and
stimuli that occur only at node #6 ('T' or 'P'). One would assume that subjects initially respond
to the predictions entailed by the shortest paths, and progressively become sensitive to the
higher-order contingencies as they encode more and more temporal context.

A simple analysis that would reveal whether or not subjects are indeed basing their
performance on an encoding of an increasingly large temporal context was conducted. Its
general principle consists of comparing the data with the probability of occurrence of the
stimuli given different amounts of temporal context.

First, we estimated the overall probability of observing each letter, as well as the
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conditional probabilities (CPs) of observing each letter as the successor of every granimatical
path of length 1, 2, 3 and 4 respectively. This was achieved by generating 60,000 trials in
exactly the same way as during the experiment, and by recording the probability of observing
every letter after every observed sequence of every length up to four elements. Only
grammatical paths (i.e. sequences of letters that conform to the grammar) were then retained for
further analysis. There are 70 such paths of length 4, each possibly followed by each of the 6
letters, thus yielding a total of 420 data points. Paths of shorter length are of course more
frequent and less numerous.

Next, the set of average correct RTs for each successor to every grammatical path of length
4 was computed, separately for groups of four successive experimental sessions.

Finally, 20 separate regression analyses were conducted, using each of the four sets of CPs
as predictor, and each of the five sets of mean RTs as dependent variable. Since the human data
is far from being perfectly reliable at this level of detail, the obtained correlation coefficients
were then corrected foi attenuation. Reliability was estimated by the split-halves method
(Cannines & Zeller, 1987), using data from even and odd experimental blocks.

Figure 4 illustrates the results of these analyses. Each point on the figure represents the
corrected r2 of a specific regression analysis. Points corresponding to analyses conducted with
the same amount of temporal context (0-4 elements) are linked together.
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Figure 4 : Correspondence between the human responses and CPs after paths of
length 0-4 during successive blocks of four simulated sessions.

If subjects are encoding increasingly large amounts of temporal context, we would expect
the variance in the distribution of their responses at successive points in training to be better
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explained by CPs of increasingly higher statistical orders. Although the overall fit is rather low
(Note that the vertical axis only extends to 0.5), the figure nevertheless reveals the expected
pattern: First, the correspondence between human responses and the overall probability of
appearance of each letter (CP-0) is very close to zero. This clearly indicates that subjects are
responding on the basis of an encoding of the constraints imposed by previous elements of the
sequence. Second, one can see that the correspondence with the first-order CPs tends to level
off below the fits for the second, third and fourth orders early in training. By contrast, the
correspondence between the data and the higher-order CPs keeps increasing throughout the
entire experiment. The fits to the second, third and fourth order paths are highly similar in part

because their associated CPs are themselves highly similar. This in turn is due to the fact that

only a small proportion of sequence elements are ambiguous up to the third or fourth position.
Finally, even though the data are most closely consistent with the second order CPs throughout

the task, it is still possible that deviations from the second order CPs are influenced by the
constraints reflected in the third or even fourth order CPs. The next section addresses this issue.

Sensitivity to long-distance temporal contingencies. In order to assess more directly
whether subjects are able to encode three or four letters of temporal context, several analyses

on specific successors of specific paths were conducted. One such analysis involved several
paths of length 3. These paths were the same in their last two elements, but differed in their first

element as well as in their legal successors. For example, we compared 'XTV' versus 'PTV'
and 'QTV', and examined RTs for the letters 'S' (legal only after 'XTV') and 'T' (legal only
after 'PTV' or 'QTV'). If subjects are sensitive to three letters of context, their response to an

'S' should be relatively faster after 'XTV' than in the other cases, and their response to a 'T'
should be relatively faster after 'PTV' or 'QTV' than after 'XTV'. Similar contrasting contexts
were selected in the following manner: First, as described above, we only considered
grammatical paths of length 3 that were identical but for their first element. Specific
ungrammatical paths are too infrequent to be represented often enough in each individual

subject's data. Second, some paths were eliminated to control for priming effects to be
discussed later. For instance, the path 'VTV' was eliminated from the analysis because the

alternation between 'V' and 'T' favors a subsequent 'T'. This effect is absent in contrasting
cases, such as 'XTV', and may thus introduce biases in the comparison. Third, specific
successors to the remaining paths were eliminated for similar reasons. For instance, we
eliminated 'S' from comparisons on the successors of 'SQX' and 'PQX' because 'Q' primes
'S' in the case of 'SQX' but not in the case of 'PQX'. As a result of residual priming, the
response to 'S' after 'SQX' tends to be somewhat faster than what would be predicted on the

basis of the grammatical constraints only, and the comparison is therefore contaminated. These
successive eliminations left the following contrasts available for further analysis : 'SQX-Q' and
'PQX-T' (grammatical) versus 'SQX-T' and 'PQX-Q' (ungrammatical); 'SVX-Q' and 'TVX-
P' versus 'SVX-P' and 'TVX-Q'; and 'XTV-S', 'PTV-T', and 'QTV-T' versus 'XTV-T',
'PTV-S' and 'QTV-S'.

Figure 5 shows the RTs elicited by grammatical and ungrammatical successors of these

remaining paths, averaged over blocks of four successive experimental sessions. The figure
reveals that there is a progressively widening difference between the two curves, thereby
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suggesting that subjects become increasingly sensitive to the predictions entailed by elements
of the temporal context as removed as three elements from the current trial. A two-way
ANOVA with repeated measures on both factors (practice [4 levels] X successor type
[grammatical vs. ungrammatical]) was conducted on this data, and revealed significant main
effects of successor type, F(1,5) = 7.265, p < .05, MSe = 530.786; and of practice, F(4,
20) = 11.333, p < .001, MSe = 1602.862. The interaction just missed significance, F(4, 20) =
2.530, p < .07, MSe = 46.368, but it is obvious that most of the effect is located in the later
sessions of the experiment. Thus, there appears to be evidence of a gradual sensitivity to at
least three elements of temporal context.
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Figure 5 : Mean RTs for predictable and unpredictable successors of selected paths

of length 3, and for successive blocks of four experimental sessions.

A similar analysis was conducted on selected paths of length 4. After selecting candidate
contexts as described above, the following paths remained available for further analysis :
'XTVX-S', 'XTVX-Q', 'QTVX-T', 'QTVX-P', 'PTVX-T', and 'PTVX-P' (grammatical)
versus 'XTVX-T', 'XTVX-P', 'QTVX-S', 'QTVX-Q', 'PTVX-S' and 'PTVX-Q'
(ungrammatical). No sensitivity to the first element of these otherwise identical paths of length
4 was found, even during sessions 17-20: a paired, one-tailed t-test on the difference between
grammatical and ungrammatical successors failed to reach significance t(5) = .076, p > . 1.
Although one cannot reject the idea that subjects would eventually become sensitive to the
constraints set by temporal contingencies as distant as 4 elements, there is no indication that
they do so in this situation.
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Experiment 2

Experiment 1 demonstrated that subjects progressively become sensitive to the sequential
structure of the material and seem to be able to maintain information about the temporal
context for up to three steps. The temporal contingencies characterizing this grammar were
relatively simple, however, since in most cases, only two elements of temporal context are
needed to disambiguate the next event perfectly.

A A

M #6 #810x x

L

Figure 6 : The Finite State Grammar used to generate the stimulus sequence in
Experiment 2.

Further, contrasting long-distance dependencies were not controlled for their overall
frequency. In Experiment 2, a more complex grammar (Figure 6) was used in an attempt to
identify limits on subjects' ability to maintain information about more distant elements of the
sequence. In this grammar, the last element ('A' or 'X') is contingent on the first one (also 'A'
or 'X'). Information about the first element, however, has to be maintained across either of the
two identical embeddings in the grammar, and is totally irrelevant for predicting the elements
of the embeddings. Thus, in order to accurately predict the last element at nodes #11 or #12,
one needs to maintain information for a minimum of four steps. Accurate expectations about
the nature of the last element would be revealed by a difference in the RT elicited by the lettcrs
'A' and 'X' at nodes #11 and #12 ('A' should be faster than 'X' at node #11, and vice-versa).
Naturally, there was again a 15% chance of substituting another letter to the one erqribed by
the grammar. Further, a small loop was inserted at node #13 so as to avoid direct repetitions
between the letters that precede and follow node #13. One random letter was always presented



Cleeremans & McClelland

16

at this point; after which there was a 40% chance of staying in the loop on subsequent steps.
Finally, in order to obtain more direct information about subjects' explicit knowledge of the

training material, we asked them to try to generate the sequence after the experiment was
completed. This "generation" task involved exactly the same stimulus sequence generation
procedure as during training. On every trial, subjects had to press on the key corresponding to
the location of the next event.

Method

The design of Experiment 2 was almost identical to that of Experiment 1. The following
details the changes :

Subjects. Six new subjects (CMU undergraduates and graduates, aged 19-35) participated
in Experiment 2.

Generation task. Experiment 1 did not include any strong test of subjects' verbalizable
knowledge about the stimulus material. In the present experiment, we attempted to remedy this
situation by using a generation task inspired by Nissen and Bullemer (1987). After completing
the 20 experimental sessions, subjects were informed of the nature of the manipulation, and
asked to try to predict the successor of each stimulus. The task consisted of three blocks of 155
trials of events generated in exactly the same way as during training. (As during the experiment
itself, the five initial random trials of each block were not recorded.) On each trial, the stimulus
appeared below one of the six screen positions, and subjects had to press on the key
corresponding to the position at which they expected the next stimulus to appear. Once a
response had been typed, a cross 0.40 cm in width appeared centered 1 cm above the screen
position corresponding to the subject's prediction, and the stimulus was moved to its next
location. A short beep was emitted by the computer on each error. Subjects were encouraged to
be as accurate as possible.

Results & Discussion

Task performance. Figure 7 shows the main results of Experiment 2. They closely
replicate the general results of Expt riment 1, although subjects were a little bit faster overall in
Experiment 2. A two-way ANOVA with repeated measures on both factors (practice [20 levels]
X trial type [grammatical vs. ungrammatical]) again revealed significant main effects of
practice, F(19,95) = 32.011, p < .001, MSe = 21182.79; and of trial type, F(1,5) = 253.813,
p < .001, MSe = 63277.53; as well as a significant interaction, F(19,95) = 4.670, p < .001,
MSe = 110.862.

Accuracy averaged 97.00% over all trials. Subjects were again slightly more accurate on
grammatical (97.60%) than on ungrammatical (95.40%) trials. However, a two-way ANOVA
with repeated measures on both factors (practice [20 levels] X trial type [grammatical vs.
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ungrammatical]) failed to confim this difference, F(1,5) = 5.35 1, p > .05, MSe = .005. The
effect of practice did reach significance, F(19, 95) = 4.112, p < .001, MSe = .00018; but not
the interaction, F(19,95) = 1.060, p > .05, MSe = .00008. Subjects became more accurate on
both grammatical and ungrammatical trials as the experiment progressed.
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Figure 7 : Mean RTs for grammatical and ungrammatical trials for each of the 20

sessions of Experiment 2.

Sensitivity to long-distance temporal contingencies. Of greater interest are the results of
analyses conducted on the responses elicited by the successors of the four shortest paths
starting at node #0 and leading to either node #11 or node #12 ('AJCM', 'AMLJ', 'XJCM' &
'XMLJ'). Among those paths, those beginning with 'A' predict 'A' as their only possible
successor, and vice-versa for paths starting with 'X'. Since the sub-paths 'JCM' and 'MLJ'
undifferentially predict 'A' or 'X' as their possible successors, subjects need to maintain
information about the initial letter in order to make accurate predictions. The RTs on legal
successors of each of these four paths (i.e. 'A' for 'AJCM' and 'AMIJ'; and 'X' for 'XJCM'
and 'XMLJ') were averaged together and compared to the average RT on the illegal successors
(i.e. 'X' for 'AJCM' and 'AMLJ'; and 'A' for 'XJCM' and 'XMLJ'), thus yielding two scores.
Any significant difference between these two scores would mean that subjects are
discriminating between legal and illegal successors of these four paths, thereby suggesting that
they have been able to maintain information about the first letter of each path over three
irrelevant steps. The mean RT on legal successors over the last four sessions of the experiment
was 385, and the corresponding score for illegal successors was 388. A one-tailed paired t-test
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on this difference failed to reach significance, t(5) = 0.571, p > .05. Thus, there is no
indication that subjects were able to encode even the shortest long-distance contingency of this
type.

Generation Task. In order to determine if subjects were better able to predict grammatical
elements than ungrammatical elements after training, a two-way ANOVA with repeated
measures on both factors (practice [3 levels] X trial type [grammatical vs. ungrammatical]) was
conducted on the accuracy data of five subjects (One subject had to be eliminated because of a
technical failure).

For grammatical trials, subjects averaged 23.00%, 24.40%, and 26.20% correct predictions
for the three blocks of practice respectively. The corresponding data for the ungrammatical
trials were 18.4%, 13.8%, and 20. 10%. Chance level was 16.66%. It appears that subjects are
indeed better able to predict grammatical events than ungrammatical events. The 4NOVA
confirned this effect: There was a significant main effect of trial type, F(1, 4) = 10.13 1, p <
.05, MSe = .004; but no effect of practice, F(2, 8) = 1.030, p > .05, MSe = .004; and no
interaction, F(2, 8) = .1654, p > .05, MSe = .001. Although overall accuracy scores are very
low, these results nevertheless clearly indicate that subjects have acquired some explicit
knowledge about the sequential structure of the material in the course of training. This is
consistent with previous studies (Cohen et al., 1990; Willingham Nissen & Bullemer, 1989),
and not surprising given the extensive training subjects have been exposed to. At the same
time, it is clear that whatever knowledge was acquired during training is of limited use in
predicting grammatical elements, since subjects were only able to do so in about 25% of the
trials of the generation task.

Simulation of the Experimental Data

Taken together, the results of both experiments suggest that subjects do not appear to be
able to encode long-distance dependencies when they involve four elements of temporal
context (i.e. three items of embedded independent material); at least, they cannot do so under
the conditions used here. However, there is clear evidence of sensitivity to the last three
elements of the sequence (Experiment 1). Further, there is evidence for a progressive encoding
of the temporal context information: Subjects rapidly learn to respond on the basis of more
than the overall probability of each stimulus, and become only gradually sensitive to the
constraints entailed by higher-order contingencies.

Application of the SRN model

To model our experimental situation, we used an SRN with 15 hidden units and local
representations on both the input and output pools (i.e. each unit corresponded to one of the 6
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stimuli). The network was trained to predict each element of a continuous sequence of stimuli
generated in exactly the same conditions as for human subjects in Experiment 1. On each step,
a letter was generated from the grammar as described in the method section of Experiment 1,
and presented to the network by setting the activation of the corresponding input unit to 1.0.
Activation was then allowed to spread to the other units of the network, and the error between
its response and the actual successor of the current stimulus was then used to modify the
weights.

During training, the activation of each output unit was recorded on every trial and
transformed into Luce ratios (Luce, 1963) to normalize the responses 2. For the purpose of
comparing the model's and the subject's responses, we assumed 1) that the normalized
activations of the output units represent response tendencies, and 2) that there is a linear
reduction in RT proportional to the relative strength of the unit corresponding to the correct
response.
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Figure 8 Correspondence between the SRN's responses and CPs after paths of

length 1-4 during successive blocks of four simulated sessions.

This data was first analyzed in the same way as for Experiment 1 subjects, and compared to
the CPs of increasingly higher statistical orders in 20 separate regression analyses. The results

2 This transformation amounts to dividing the activation of the unit corresponding to the response by the sum of

the activations of all units in the output pool. Since the strength of a particular response is determined by its
relative - rather than absolute - activation, the transformation implements a simple form of response
competition.
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are illustrated in Figure 8.
In stark contrast with the human data (Figure 5; note the scale difference), the variability in

the model's responses appears to be very strongly determined by the probabilities of particular
successor letters given the temporal context. The figure also reveals that the model's behavior
is dominated by the first-order CPs for most of the training, but that it becomes progressively
more sensitive to the second and higher order CPs. Beyond 60,000 exposures, the model's
responses come to correspond most closely to the second, then third, and then finally fourth-
order CPs.

Figure 9 illustrates a more direct comparison between the model's responses at successive
points in training with the corresponding human data. We compared human and simulated
responses after paths of length 4 in 25 separate analyses, each using one of the five sets of
simulated responses as predictor variable and one of the five sets of experimental responses as
dependent variable. The obtained correlation coefficients were again corrected for attenuation.
The results are illustrated in Figure 9. Each point in the figure represents the corrected r2 of a
specific analysis. One would expect the model's early performance to be a better predictor of
the subjects' early behavior, and vice-versa for later points in training.
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Figure 9: Correspondence between the SRN's responses and the human data during
successive blocks of four sessions of training (Experiment 1).

It is obvious that the model is not very good at capturing subjects' behavior : the overall fit
is relatively low (note that the vertical axis only goes up to 0.5), and reflects only weakly the
expected progressions. It appears that too much of the variance in the model's performance is



Learning Sequential Structure

21

accounted for by sensitivity to the temporal context.
However, exploratory examination of the data revealed that factors other than the

conditional probability of appearance of a stimulus exert an influence on performance in our
task. We identified three such factors, and incorporated them in a new version of the simulation
model:

The augmented SRN model

First of all, it appears that a response that is actually executed remains primed for a number
of subsequent trials (Bertelson, 1961; Hyman, 1953; Remington, 1969). In the last sessions of
our data, we found that if a response follows itself immediately, there is about 60 to 90 msec of
facilitation, depending on other factors. If it follows after a single intervening response (as in
'VT-V' in Experiment 1, for example), there is about 25 msec of facilitation if the letter is
grammatical at the second occurrence, and 45 msec if it is ungrammatical.

The second factor may be related: responses that are grammatical at trial r but do not
actually occur remain primed at trial t+]. The effect is somewhat weaker, averaging about 30
msec.

These two factors may be summarized by assuming 1) that activations at time t decay
gradually over subsequent trials, and 2) that responses that are actually executed become fully
activated, while those that are not executed are only partially activated.

The third factor is a priming, not of a particular response, but of a particular sequential
pairing of responses. This can best be illustrated by a contrasting example, in which the
response to the second 'X' is compared in 'QXQ-X' and 'VXQ-X'. Both transitions are
grammatical; yet the response to the second 'X' tends to be about 10 msec faster in cases like
'QXQ-X', where the 'X' follows the same predecessor twice in a row, than it is in cases like
'VXQ-X', in which the first 'X' follows one letter and the second follows a different letter.

This third factor can perhaps be accounted for in several ways. We have explored the
possibility that it results from a rapidly decaying component to the increment to the connection
weights mediating the associative activation of a letter by its predecessor. Such "fast" weights
have been proposed by a number of investigators (McCleUand & Rumelhart, 1985; Hinton &
Plaut, 1987). The idea is that when 'X' follows 'Q', the connection weights underlying the
prediction that 'X' will follow 'Q' receive an increment which has a short-term component in
addition to the standard long-term component. This short-term increment decays rapidly, but is
still present in sufficient force to influence the response to a subsequent 'X' that follows an
immediately subsequent 'Q'.

In light of these analyses, one possibility for the relative failure of the original model to
account for the data is that the SRN model is partially correct, but that human responses are
also affected by rapidly decaying activations and adjustments to connection weights from
preceding trials. To test this idea, we incorporated both kinds of mechanisms into a second
version of the model. This new simulation model was exactly the same as before, except for the
following two changes:

First, it was assumed that pre-activation of a particular response was based, not only on
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activation coming from the network but also on a decaying trace of the previous activation:

ravact[i](t) = act[i](t) + (I - act[i](t)) * k * ravact[i](t - 1)

where act(t) is the activation of the unit based on the network at time t, and ravact(r)
(running average activation at time t) is a non-linear running average that remains bounded
between 0 and 1. After a particular response had been executed, the corresponding ravact was
set to 1.0. The other ravacts were left at their current values. The constant k was set to 0.5, so
that the half-life of a response activation is one time step.

The second change consisted of assuming that changes imposed on the connection weights
by the back-propagation learning procedure have two components. The first component is a
small (slow epsilon = 0. 15) but effectively permanent change (i.e., a decay rate slow enough
to ignore for present purposes), and the other component is a slightly larger (fast epsilon =
0.2 ) change, but which has a half-life of only a single time step. (The particular values of
epsilon were chosen by trial and error, but without exhaustive search.)
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Figure 10 Correspondence between the augmented SRN's responses and CPs after
paths of length 1-4 during successive blocks of four simulated sessions.

With these changes in place, we observed that, of course, the proportion of the variance in
the model accounted for by predictions based on the temporal context is dramatically reduced,
as illustrated in Figure 10 (compare to Figure 8). More interestingly, the pattern of change in
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these measures, as well as the overall fit, is now quite similar to that observed in the human
data (Figure 4).

Indeed, there is a similar progressive increase in the correspondence with the higher-order
CPs, with the curve for the first-order CPs leveling off relatively early with respect to those
corresponding to conditional probabilities based on paths of length 2, 3, and 4.

A more direct indication of the good fit provided by the current version of the model is
given by the fact that it now correlates extremely well with the performance of the subjects
(Figure 11; compare with the same analysis illustrated in Figure 9 but note the scale
difference). Late in training, the model explains about 81% of the variance of the corresponding
human data. Close inspection of the figure also reveals that, as expected, the SRN's early
distribution of responses is a slightly better predictor of the corresponding early human data.
This correspondence gets inverted later on, thereby suggesting that the model now captures key
aspects of acquisition as well. Indeed, at almost every point, the best prediction of the human
data is the simulation of the corresponding point in training.

0.85
- SRN 01-04

- - SRN 05-08
SRN 09-12

A -0 SRN 13-16

.2 * SRN 17-20
CL
X

c0.75

U
0.6

*C

Ca
0IL
0b.

0.65 1L_
1-4 5-8 9-12 13-16 17-20

Experimental Sessions

Figure 11 : Correspondence between the augmented SRN's responses and the human
data during successive blocks of four sessions of training (Experiment 1).

Two aspects of these data need some discussion. First, the curves corresponding to each set
of CPs are close to each other because the majority of the model's responses retain their
relative distribution as training progresses. This is again a consequence of the fact that only a
few elements of the sequence require more than two elements of temporal context to be
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perfectly disambiguated.
Second, the model's responses correlate very well with the data, but not perfectly. This

raises the question as to whether there are aspects of the data that cannot be accounted for by
the postulated mechanisms. There are three reasons why this need not be the case. First, the
correction for attenuation assumes homogeneity, but because of different numbers of trials in
different cells there is more variability in some cells than in others (typically, the cells
corresponding to grammatical successors of paths of length 4 are much more stable than those
corresponding to ungrammatical successors). Second, the set of parameters we used is probably
not optimal. Although we examined several combinations of parameter values, the possibility
of better fits with better parameters can not be excluded. Finally, in fitting the model to the data
we have assumed that the relation between the models' responses and reaction times was linear,
whereas in fact it might be somewhat curvilinear. These three facts would all tend to reduce the
r 2 well below 1.0 even if the model is in fact a complete characterization of the underlying
processing mechanisms.

The close correspondence between the model and the subjects' behavior during learning is
also supported by an analysis of the model's responses to paths of length 3 and 4 (Experimnent
1). Using exactly the same selection of paths as for the subjects in each case, we found that a
small but systematic difference between the model's responses to predictable and unpredictable
successors to paths of length 3 emerged in sessions 9-12 and kept increasing over sessions 13-
16 and 17-20. The difference was .056 (i.e. a 5.6% difference in the mean response strength)
when averaged over the last four sessions of training. By contrast, this difference score for
paths of length 4 was only .003 at the same point in training, thereby clearly indicating that the
model was not sensitive to the 4th-order temporal context.

Finally, to further illustrate the correspondence between the model and the experimental
data, we wanted to compare human and simulated responses on an ensemble of specific
successors of specific paths, but the sheer number of data points renders an exhaustive analysis
virtually intractable. There are 420 data points involved in each of the analyses discussed
above. However, one analysis that is more parsimonious but preserves much of the variability
of the data consists of comparing human and simulated responses for each letter at each node
of the grammar. Since the grammar used in Experiment 1 counts seven nodes (0-6), and since
each letter can occur at each node because of the noise, this analysis yields 42 data points, a
comparatively small number. Naturally, some letters are more likely to occur at some nodes
than at others, and therefore one expects the distribution of average RTs over the six possible
letters to be different for different nodes. For instance, the letters 'V' and 'P' should elicit
relatively faster responses at node #0, where both letters are grammatical, than at node #2,
where neither of them is. Figure 12 represents the results of this analysis. Each individual graph
shows the response to each of the six letters at a particular node, averaged over the last four
sessions of training, for both human and simulated data. Since there is an inverse relationship
between activations and RTs, the model's responses have been subtracted from one. All
responses were then transformed into standard scores to allow for direct comparisons between
the model and the experimental data, and the figures therefore represent deviations from the
general mean.
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Visual examination reveals that the correspondence between the model and the data is very
good. This was confirmed by the high degree of association between the two data sets : the
corrected r 2 was .88. Commenting in detail on each of the figures seems unnecessary, but
some aspects of the data are worth remarking on. For instance, one can see that the fastest
response overall is elicited by a 'V' at node #4. This is not surprising, since the 'T-V'
association is both frequent (note that it also occurs at node #0) and consistent (i.e. the letter 'T'
is a relatively reliable cue to the occurrence of a subsequent 'V'). Further, 'V' also benefits
from its involvement in a 'TVT-V' alternation in a number of cases. On the same figure, one
can also see that 'T' elicits a relatively fast response, even though it is ungrammatical at node
#4. This is a direct consequence of the fact that a 'T' at node #4 follows itself immediately. It is
therefore primed despite its ungrammaticality. The augmented SRN model captures both of
these effects quite adequately, if not perfectly.

Attention and Sequence Structure

Can the SRN model also yield insights into other aspects of sequence learning ? Cohen et
al. (1990) reported that sequence structure interacts with attentional requirements. Subjects
placed in a choice reaction situation were found to be able to learn sequential material under
attentional distraction, but only when it involved simple sequences in which each element has a
unique successor (such as in '12345...'). More complex sequences involving ambiguous
elements (i.e. elements which could be followed by several different successors, as in
'123132...') could only be learned when no secondary task was performed concurrently. A
third type of sequence - hybrid sequences - in which some elements were uniquely
associated to their successor and some other elements were ambiguous (such as in '143132...'),
elicited intermediate results. Cohen et al. (1990) hypothesized that the differential effects of the
secondary task on the different types of sequences might be due to the existence of two
different learning mechanisms : one that establishes direct pairwise associations between an
element of the sequence and its successor, and another which creates hierarchical
representations of entire subsequences of events. The first mechanism would require less
attentional resources than the second, and would thus not suffer as much from the presence of a
secondary task. The authors further point out that there is no empirical basis for distinguishing
between this hypothesis and a second one, namely that all types of sequences are processed
hierarchically, but that ambiguous sequences require a more complex "parsing" than unique
sequences. Distraction would then have differential effects on these two kinds of hierarchical
coding.

We propose a third possibility : that sequence learning may be based solely on associative
learning processes of the kind found in the SRN. Through this learning mechanism,
associations are established between prediction-relevant features of previous elements of the
sequence and the next element. If two subsequences have the same successors, the model will
tend to develop identical internal representations in each case. If two otherwise identical
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subsequences are followed by different successors as a function of their predecessors, however,
the network will tend to develop slightly different internal representations for each
subsequence. This ability of the network to represent simultaneously similarities and
differences led us to refer to the SRN model as an instantiation of a graded state machine
(McClelland, Cleeremans & Servan-Schreiber, 1990). This notion emphasizes the fact that,
although there is no explicit representation of the hierarchical nature of the material, the model
nevertheless develops internal representations which are shaded by previous elements of the
sequence.

The key point in the context of this discussion is that the representations of sequence
elements which are uniquely associated with their successors are not different in kind from
those of elements which can be followed by different successors as a function of their own
predecessors. How then, might the model account for the interaction between attention and
sequence structure reported by Cohen et al. (1990) ? One possibility is that the effect of the
presence of a secondary task is to hamper processing of the sequence elements. A simple way
to implement this notion in our model consists of adding normally distributed random noise to
the input of specific units of the network (Cohen and Servan-Schreiber, 1989, explored a
similar idea by manipulating gain to model processing deficits in schizophrenia). The random
variability in the net input of units in the network tends to disrupt processing, but in a graceful
way (i.e. performance does not break down entirely). The intensity of the noise is controlled by
a scale parameter, sigma. We explored how well changes in this parameter, as well as changes
in the localization of the noise, captured the results of Experiment 4 of Cohen et al. (1990)3.

A simulation of attentional effects in sequence learning

In this experiment, subjects were exposed to 14 blocks of either 100 trials for the unique
sequence ('12345...') condition, or of 120 trials for the ambiguous sequence ('123132...') and
hybrid sequence ('143132...') conditions. Half of the subjects receiving each sequence
performed the task under attentional distraction (in the form of a tone-counting task); the other
half only performed the sequence learning task. In each of these aix conditions, subjects first
received two blocks of random material (blocks 1-2), followed by eight blocks of structured
material (blocks 3-10), then another two blocks of random material (blocks 11-12), and a final
set of two blocks of structured material (blocks 13-14). The interesting comparisons are
between performance on the last two random blocks (blocks 11-12) on the one hand, and the
four last structured blocks (blocks 9-10 and 13-14) on the other hand. Any positive difference
between the average RTs on these two groups of blocks would indicate interference when the
switch to random material occurred, thereby suggesting that subjects have become sensitive to
the sequential structure of the material.

3 In work done independently of our simulations, J. K. Kruschke (personal communication, June 5, 1990) has
also explored the possibility of simulating the effects of attention on sequence learning in SRNs. n one of his
simulations, the learning rate of the connections from the context units to the hidden units was set to a lower value
than for the other connections of the network.
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We have represented the standard scores of the six relevant RT differences in the left panel
of Figure 13. When the sequence learning task is performed alone ("Single" condition), unique
and hybrid sequences are better learned than ambiguous sequences, as indicated by the larger
difference between random and structured material elicited by unique and hybrid sequences.
The same pattern is observed when the sequence learning task is performed concurrently with
the tone-counting task ("Dual" condition), but overall performance is much lower. In the actual
data, the difference between random and structured material for the ambiguous sequence is
very close to zero. In other words, the ambiguous sequence is not learned at all under dual task
conditions. The crucial point that this analysis reveals, however, is that learning of the unique
and hybrid sequences is also hampered by the presence of the secondary task.

DATA: Cohen at al. (1990) SIMULATION: sigma : 0.7 SIMULATION: sigma = 1.9

[Experiment 4] [all units] [hidden units only]

2 2 2
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U1 1

0 "
0.0 I yb 0
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Single Dual Single Dual Single Dual
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Figure 13 :Standard scores of human and simulated mean difference scores between
responses on random and structured material, for unique, hybrid, and ambiguous
sequences, and under single or dual task conditions.

To capture this pattern of results, an SRN with 15 hidden units was trained in exactly the
same conditions as Cohen et al.'s subjects. We recorded the response of the network to each
stimulus, and separately averaged these responses over the last random and structured blocks,
as described above. These mean responses were then substracted from one and transformed into
standard scores to allow for direct comparisons with the data.

We explored three different ways of modeling the secondary task by means of noise. One
consists of adding noise to the connections from the context units to the hidden units only. We
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found that this resulted in specific interference with acquisition of the ambiguous sequence.
Basically, the network learns to ignore the noisy information coming from the context units,
and minimizes the error using the main processing pathway only. However, this is not what is
observed in the data : the presence of the secondary task also hampers learning of the unique
and hybrid sequences. Therefore, we focussed on two other ways of allowing noise to interfere
with processing: adding noise to the net input of each unit of the network, or adding noise to
the net input of each hidden unit only. In both cases, activation propagating from the context
units and from the input units to the rest of the network was affected equally.

In a first simulation, the secondary task was modelled by adding normally distributed
random noise (sigma = 0.7) to the net input of each unit in the network. The learning rates
were set to 0.35 (slow epsilon) and to 0.45 (fast epsilon). The values of the other parameters
were identical to those used in our previous simulations. The results are illustrated in the
middle panel of Figure 13. The response pattern produced by the network is quite similar to the
human data. In particular : a) the noise affected learning of all three types of sequences, and b)
it virtually eliminated learning of the ambiguous sequence. Indeed, the difference score for the
ambiguous sequence was 0.019 in the dual condition - only 1.9%. Thus, at this level of noise,
learning of the ambiguous sequence is almost entirely blocked, as for Cohen et al.'s subjects.
By contrast, learning of the unique and hybrid sequences is relatively preserved, although the
hybrid sequence was not learned as well by the model as by the subjects.

The right panel of Figure 13 illustrates the results of a similar analysis conducted on a
simulation using higher learning rates (slow epvilopt = 0.7, fast epsilon = 0.8) and in which
noise (sigma = 1.9) was only allowed to affect the net input to each hidden unit of the network.
The figure shows that with these very different parameters, the model still captures the basic
pattern of results observed in the data. The difference score for the ambiguous sequence in the
dual condition was 0.023 - again very close to zero. In contrast with the previous simulation,
however, the hybrid sequence now appears to be learned as well as by human subjects. The
ambiguous sequence, on the other hand, seems to be learned somewhat too well with this
particular set of parameters.

The important result is that both simulations produced an interference pattern qualitatively
similar to the empirical data. We found that quite a wide range of parameter values would
produce this effect. For instance, the basic pattern is preserved if the learning rates and the
noise parameter are varied proportionally, or, as our two simulations illustrate, if the noise is
allowed to interfere with all the units in the network or with only the hidden units. This just
shows that fitting simulated responses to empirical data ought to be done at a fairly detailed
level of analysis. A precise, quantitative match with the data seems inappropriate at this
relatively coarse level of detail. Indeed, there is no indication that exactly the same pattern of
results would be obtained in a replication, and overfitting is always a danger in simulation
work. The central point is that we were able to reproduce this pattern of results by manipulating
a single parameter in a system which makes no processing or representational distinction
between unique, hybrid, and ambiguous sequences.

To sunimarize, these results have two important implications. First, it appears that the
secondary task exerts similar detrimental effects on both types of sequences. Learning of
ambiguous sequences is almost entirely blocked when performed concurrently with the tone-
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counting task. Unique and hybrid sequences can be learned under attentional distraction, but to
a lesser extent than under single-task conditions. Both of these effects can be simulated by
varying the level of noise in the SRN model.

Second, our simulations suggest that unique and ambiguous sequences are represented and
processed in the same way. Therefore, a distinction between associative and hierarchical
sequence representations does not appear to be necessary to explain the interaction between
sequence structure and attention observed by Cohen et al. (1990).

General Discussion

In Experiment 1, subjects were exposed to a six-choice serial reaction time task for 60,000
trials. The sequential structure of the material was manipulated by generating successive
stimuli on the basis of a small finite-state grammar. On some of the trials, random stimuli were
substituted to those prescribed by the grammar. The results clearly support the idea that
subjects become increasingly sensitive to the sequential structure of the material. Indeed, the
smooth differentiation between predictable and unpredictable trials can only be explained by
assuming that the temporal context set by previous elements of the sequence facilitates or
interferes with the processing of the current event. Subjects progressively come to encode more
and more temporal context by attempting to optimize their performance on the next trial.
Experiment 2 showed that subjects were relatively unable to maintain information about long-
distance contingencies that span irrelevant material. Taken together, these results suggest that
in this type of task subjects gradually acquire a complex body of procedural knowledge about
the sequential structure of the material. Several issues may be raised regarding the form of this
knowledge and the mechanisms which underlie its acquisition.

Sensitivity to the temporal context and sequence representation. Subjects are clearly
sensitive to more than just the immediate predecessor of the current stimulus; indeed, there is
evidence of sensitivity to differential predictions based on two and even three elements of
context. However, sensitivity to the temporal context is also clearly limited: even after 60,000
trials of practice, there is no evidence that subjects discriminate between the different possible
successors entailed by elements of the sequence four steps away from the current trial. The
question of how much temporal context subjects may be able to encode has not been
thoroughly explored in the literature, and it is therefore difficult to compare our results with the
existing evidence. Remington (1969) has demonstrated that subjects' responses in a simple
two-choice reaction task were affected by elements as removed as five steps. The effects were
very small, however, and did not depend on the sequential structure of the material. Rather,
they were essentially the result of repetition priming. More recently, however, Lewicki et al.
(1987), and also Stadler (1989), reported that subjects seemed to be sensitive to six elements of
temporal context in a search task in which the location of the target on the seventh trial was
determined by the locations of the target on the six previous trials. This result may appear to
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contrast with ours, but close inspection of the structure of the sequences used by Lewicki et al.
(1987) reveals that 50% of the uncertainty associated with the location of the target on the 7th
trial can be removed by encoding just three elements of temporal context. This could
undoubtedly account for the facilitation observed by the authors, and is totally consistent with
the results obtained here.

It is interesting to speculate on the causes of these limitations. Long-distance contingencies
are necessarily less frequent than shorter ones. However, this should not per se prevent them
from becoming eventually encoded, should the regularity-detection mechanism be given
enough time and resources. A more sensible interpretation is that memory for sequential
material is limited, and that the traces of individual sequence elements decay with tine. More
recent traces would replace older ones as they are processed. This notion is at the core of many
early models of sequence processing (e.g. Laming, 1969). In the SRN model, however,
sequence elements are not represented individually, nor does memory for context
spontaneously decay with time. The model nevertheless has clear limitations in its ability to
encode long-distance contingencies. The reason for these limitations is that the model develops
representations which are strongly determined by the constraints imposed by the prediction
task. That is, the current element is represented together with a representation of the
prediction-relevant features of previous sequence elements. As learning progresses,
representations of subsequences followed by identical successors tend to become more and
more similar. For instance, we have shown that an SRN with three hidden units develops
internal representations that correspond. exactly to the nodes of the finite-state grammar from
which the stimulus sequence was generated (Cleeremans et al., 1989). This is a direct
consequence of the fact that all the subsequences which entail the same successors (i.e. which
lead to the same node) tend to be represented together. As a result, it also becomes increasingly
difficult for the network to produce different responses to otherwise identical subsequences
preceded by disambiguating elements. In a sense, more distant elements are subject to a loss of
resolution, the magnitude of which depends exponentially on the number of hidden units
available for processing (Servan-Schreiber et al., 1988). Encoding long-distance contingencies
is greatly facilitated if each element of the sequence is relevant - even only in a probabilistic
sense - for predicting the next one. Whether or not subjects also exhibit this pattern of
behavior is a matter for further research.

Awareness of the sequential structure. It is often claimed that learning can proceed
without explicit awareness (e.g. Reber, 1989; Willingham, Nissen & Bullemer, 1989).
However, in the case of sequence learning, as in most other implicit learning situations, it
appears that subjects become aware of at least some aspects of the structure inherent in the
stimulus material. Our data suggests that subjects do become aware of the small alternations
that occur in the grammar (e.g 'SQSQ' and 'VTVT' in Experiment 1), but have little reportable
knowledge of any other contingencies. Further, the results of the generation task, which
followed training in Experiment 2, clearly indicate that subjects were able to use their
knowledge of the sequence to predict the location of some grammatical events. However,
overall performance in the generation task was very low, particularly when compared with
previous results. Cohen et al. (1990) for irstance, showed that subjects were able to achieve
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near perfect prediction performance in as little as 100 trials. In stark contrast, our subjects were
only able to correctly predict about 25% of the grammatical events after 450 trials of the
generation task and 60,000 trials of trainingl This difference further highlights the complexity
of our experimental situation, and suggests that the presence of the noise and the number of
different possible grammatical subsequences make it very hard to process the material
explicitly. This was corroborated by subjects' comments that they had sometimes tried to
predict successive events but had abandoned this strategy because they felt it was detrimental to
their performance. These observations lead us to believe that subjects had very little explicit
knowledge of the sequential structure in this situation, and that explicit strategies played but a
negligible role during learning. One may wonder, however, about the role of explicit recoding
strategies in task settings as simple as those used by Lewicki et al. (1988) or Cohen et al.
(1990). In both these situations, subjects were exposed to extremely simple repeating sequences
of no more than six elements in length. But the work of Willingham et al. (1989) has
demonstrated that a sizeable proportion of subjects placed in a choice reaction situation
involving sequences of ten elements do become aware of the full sequence. These subjects
were also faster in the sequence learning task, and more accurate in predicting successive
sequence elements in a follow-up generation task. On the same token, a number of subjects also
failed to show any declarative knowledge of the task despite good performance during the task.
These results highlight the fact that the relationship between implicit and explicit learning is
complex and subject to individual differences. Claims that acquisition is entirely implicit in
simple sequence learning situations must be taken with caution.

As it stands, the SRN model does not address the implicit/explicit distinction. Indeed, it
incorporates no mechanism for verbalizing knowledge or for detecting regularities in a
reportable way. Although it is likely that some subjects used explicit recoding strategies during
learning, the complexity of the material we used - as well as the lack of improvement in the
generation task - make it unlikely that they did so in any systematic way. Further
experimental work is needed to assess in greater detail the impact of explicit strategies on
sequence learning, using a range of material of differing complexity, before simulation models
that incorporate these effects can be elaborated.

Learning mechanisms and attention. The augmented SRN model provides a detailed,
mechanistic, and fairly good account of the data. Although the correspondence is not perfect,
the model nevertheless captures much of the variability of human responses.

The model's core learning mechanism implements the notion that sensitivity to the temporal
context emerges as the result of optimizing preparation for the next event on the basis of the
constraints set by relevant (i.e. predictive) features of the previous sequence. However, this
core mechanism alone is not sufficient to account for all aspects of performance. Indeed, as
discussed above, our data indicate that in addition to the long-term and progressive facilitation
obtained by encoding the sequential structure of the material, responses are also affected by a
number of other short-term (repetition and associative) priming effects. It is interesting to note
that the relative contribution of these short-term priming effects diminishes with practice. For
instance, an ungrammatical but repeated 'Q' that follows an 'SQ-' at node #1 in Experiment 1
elicits a mean RT of 463 msec over the first four sessions of training. This is much faster than
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the 540 msec elicited by a grammatical 'X' that follows 'SQ-' at the same node. By contrast,
this relationship becomes inverted in the last four sessions of the experiment: the 'Q' now
evokes a mean RT of 421 msec, whereas the response to an 'X' is 412 msec. Thus, through
practice, the sequential structure of the material comes to exert a growing influence on
response times, and the contribution of short-term priming effects becomes weaker and weaker.
The augmented SRN model captures this interaction in a simple way : early in training, the
connection weights underlying sensitivity to the sequential structure are very small and can
only exert a limited influence on the responses. At this point, responses are quite strongly
affected by previous activations and adjustments to the fast weights from preceding trials. Late
in training, however, the contribution of these effects in determining the activation of the
output units is relatively small relative to the contribution of the long-term connection weights,
which, through training, have been allowed to develop considerably.

With both these short-term and long-term learning mechanisms in place, we found that the
augmented SRN model captured key aspects of sequence learning and processing in our task.
Further, the model also captured the effects of attention on sequence learning reported by
Cohen et al. (1990). Even though ambiguous sequences are not processed by separate
mechanisms in the SRN model, they are nevertheless harder to learn than unique and hybrid
sequences because they require more temporal context information to be integrated. So the
basic difference between the three sequence types is produced naturally by the model. Further,
when processing is disturbed by means of noise, the model produces an interference pattern
very similar to the human data. Presumably, a number of different mechanisms could produce
this effect. For instance, Jennings and Keele (1990) explored the possibility that the absence of
learning of the ambiguous sequence under attentional distraction was the result of impaired
"parsing" of the material. The authors trained a sequential back-propagation network (Jordan,
1986) to predict successive elements of a sequence, and measured how the prediction error
varied with practice under different conditions and for different types of sequences. The results
showed that learning of ambiguous sequences progressed much slower than for unique or
hybrid sequences when the input information did not contain any cues as to the structure of the
sequences. By contrast, learning of ambiguous sequences progressed at basically the same rate
as for the other two types of sequences when the input to the network did contain information
about the structure of the sequence, such as the marking of sequence boundaries or an explicit
representation of its sub-parts. If one assumes that attention is required for this explicit parsing
of the sequence to take place, and that the effects of the secondary task is to prevent such
mechanisms to operate, then indeed learning of the ambiguous sequence will be hampered in
the dual task condition. However, the data seem to indicate that learning of the unique and
hybrid sequences is also hampered by the presence of the secondary task. One would therefore
need to know more about the effects of parsing on learning of the unique and hybrid sequences.
Presumably, parsing would also facilitate processing of these kinds of sequences, although to a
lesser extent than for ambiguous sequences.

In the case of the SRN model, we found that specifically interfering with processing of the
ambiguous sequence by adding noise to the connections from the context units to the hidden
units would not produce the observed data. On the contrary, our simulations indicate that the
interference produced by the secondary task seems to be best accounted for when noise is
allowed to affect equally processing of information corning from the context units and
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information coming from the input units. Therefore, it appears that there is no a priori need to
introduce a theoretical distinction between processing and representation of sequences that
have a hierarchical structure and sequences that do not.

Conclusion

Subjects placed in a choice reaction time situation acquire a complex body of procedural
knowledge about the sequential structure of the material, and gradually come to respond on the
basis of the constraints set by the last three elements of the temporal context. It appears that the
mechanisms underlying this progressive sensitivity operate in conjunction with short-term and
and short-lived priming effects. Encoding of the temporal structure seems to be primarily
driven by anticipation of the next element of the sequence. A PDP ,iodel that incorporates both
of these mechanisms in its architecture was described, and found to be useful in accounting for
key aspects of acquisition and processing. This class of model therefore appears to offer a
viable framework for modeling unintentional learning of sequential material.
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